M9391A PXIe Vector Signal Analyzer

1 MHz to 3 GHz or 6 GHz

Table of Contents

Overview 3
Technical Specifications and Characteristics 4
Definitions for specifications 4
Recommended best practices in use 4
Block diagram 5
Frequency 6
Amplitude 8
Dynamic range 11
Spectral purity 14
Data acquisition 16
Measurement speed 17
Format specific measurement data 19
Environmental and physical specifications 23
System requirements 24
Software 25
Setup and Calibration Services 26
Configuration and Ordering Information 28

Overview

Be ready for tomorrow - today

RF requirements keep growing while timelines keep shrinking. To help ease the technical and business pressures, the right test solution provides continuity in measurements and longevity in capability. The Keysight Technologies, Inc. M9391A PXIe vector signal analyzer (PXI VSA) is the next logical step in RF signal analysis.

The M9391A PXI VSA, combined with the M9381A PXIe vector signal generator provides a complete solution for fast, high quality measurements optimized for RF manufacturing test environments.

To help you get proven results even faster, Keysight's PXI VSA can be used with X-Series measurement applications for modular instruments, 89600 VSA software and SystemVue. These software applications enable you to investigate, validate and test your RF communications designs.

From fully modular hardware to software leverage to worldwide support, the PXI VSA is the low-risk way to manage change and be ready for tomorrow-today.

Product description

The M9391A PXI VSA is a modular vector signal analyzer for frequencies from 1 MHz to 6 GHz and up to 160 MHz analysis bandwidth. The M9391A is comprised of four individual PXI modules - M9350A downconverter, M9214A digitizer, M9301A synthesizer and M9300A frequency reference. A single M9300A frequency reference can be shared between multiple instruments to minimize footprint.

The flexible, modular design of the M9391A enables you to efficiently scale to multi-channel signal analysis to test multiple-input, multiple-output (MIMO) devices. Capability can also be scaled with options for memory, frequency range and modulation bandwidth which can be easily upgraded in the field.

Applications

- Power amplifier and front-end-module design validation and manufacturing
- Radio transceiver design validation and production test
- MIMO and multi-channel device test

Reference solutions

Application specific reference solutions, a combination of recommended hardware, software, and measurement expertise, provide the essential components of a test system. The following reference solutions include the M9391A PXI VSA as a hardware component.

- RF PA/FEM characterization and test, Reference Solution for the industry's fastest envelope tracking test, rapid waveform download, tight synchronization, automated calibration and digital pre-distortion. For more information, see www.keysight.com/find/solution-padvt
- LTE/LTE-A multi-channel test, Reference Solution for faster insight into carrier aggregation and spatial multiplexing designs. For more information, see www.keysight.com/find/ solution-LTE

Figure 1. M9391A PXIe vector signal analyzer with four modules consisting of the M9214A digitizer, M9301A synthesizer, M9350A downconverter and M9300A frequency reference.

Technical Specifications and Characteristics

Definitions for specifications

Temperatures referred to in this document are defined as follows:

- Full temperature range = Individual module temperature of 25 to $75^{\circ} \mathrm{C}$, as reported by the module, and environment temperature of 0 to $55^{\circ} \mathrm{C}$.
- Controlled temperature range = Individual module temperature of 40 to $51^{\circ} \mathrm{C}$, as reported by the module, and environment temperature of 20 to $30^{\circ} \mathrm{C}$.

Specifications describe the warranted performance of calibrated instruments. Data represented in this document are specifications under the following conditions unless otherwise noted.

- Calibrated instruments have been stored for a minimum of 2 hours within the full temperature range
- 45 minute warm-up time
- Calibration cycle maintained
- When used with Keysight M9300A frequency reference and Keysight interconnect cables

Characteristics describe product performance that is useful in the application of the product, but that is not covered by the product warranty. Characteristics are often referred to as Typical or Nominal values and are italicized.

- Typical describes characteristic performance, which 80\% of instruments will meet when operated within the controlled temperature range.
- Nominal describes representative performance that is useful in the application of the product when operated within the controlled temperature range.

Recommended best practices in use

- Use slot blockers and EMC filler panels in empty module slots to ensure proper operating temperatures. Keysight chassis and slot blockers optimize module temperature performance and reliability of test.
- Set chassis fan to high at environmental temperatures above $45^{\circ} \mathrm{C}$
- Maintain temperature stability for best multi-channel phase coherence
- Set chassis fans to maximum
- Maintain stable ambient temperature
- Perform warm-up with session open and representative acquisition waveform running

Conversion type operating range

Conversion types	Frequency range
Auto	1 MHz to 3 or 6 GHz
Image protect	1 MHz to 3 or 6 GHz
Single high	400 MHz to 3 or 6 GHz
Single low	1.1 GHz to 3 or 6 GHz

Additional information

- Mixer level offset modifies the receiver gain prior to the first mixer of the receiver. A negative setting improves distortion (i.e., TOI) at the cost of noise performance (i.e., DANL). A positive setting improves noise performance at the cost of distortion.
- Performance described in this document applies for module temperature within ± 3 degrees of comprehensive alignment, unless otherwise noted.
- When used with a Keysight M9018A PXIe chassis, comprehensive alignment requires chassis FPGA version 1.05 or greater.
- When configured for multi-channel, phase-coherent operation (shared synthesizer configuration), instrument level warranted specifications only apply to the M9391A which was previously calibrated with the M9301A synthesizer, showing a valid calibration indicator. For all other M9391A channels, specifications revert to typical performance. If using an external LO distribution unit, such as the V2802A LO distribution network, specifications for all M9391A channels revert to typical performance.
- All graphs contain measured data from one unit and is representative of product performance within the controlled temperature range unless otherwise noted.
- The specifications contained in this document are subject to change.

Technical Specifications and Characteristics

Block diagram

Figure 3. M9391A PXIe vector signal analyzer block diagram with four modules consisting of the M9301A synthesizer, M9350A downconverter, M9214A digitizer and optional M9300A frequency reference.

Technical Specifications and Characteristics

Frequency
Frequency range and resolution

Option F03	1 MHz to 3 GHz	
Option F06	1 MHz to 6 GHz	
Tuning resolution	0.001 Hz	Nominal
IF frequency		326 MHz
	15 MHz filter	240 MHz
	40 MHz filter	300 MHz

Analysis bandwidth ${ }^{1}$

Maximum bandwidth	Option B04			40 MHz
	Option B10	100 MHz		
	Option B16	160 MHz		

Frequency switching speed ${ }^{2,3}$

List mode switching speed ${ }^{4}$	Sample rate	Acquisition bandwidth	Standard, nominal	Option UNZ, nominal
Baseband frequency offset change ${ }^{5}$	$\leq 100 \mathrm{MHz}$	$\leq 80 \mathrm{MHz}$	5 ms	$27 \mu s$
	> 100 MHz to	> 80 MHz to	5 ms	$102 \mu \mathrm{~s}$
	< 180 MHz	< 144 MHz		
	$\geq 180 \mathrm{MHz}$	$\geq 144 \mathrm{MHz}$	5 ms	$15 \mu \mathrm{~s}$
Arbitrary frequency change			5 ms	$320 \mu s$
Non-list mode switching speed ${ }^{6}$			Standard, nominal	Option UNZ, nominal
Baseband frequency offset change ${ }^{5}$			5 ms	$310 \mu \mathrm{~s}$
Arbitrary frequency change			5 ms	2.3 ms

1. Instantaneous bandwidth (1 dB bandwidth) available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency or modulation domain.
2. When used with the M9018A PXIe chassis (2-link configuration: 1×8 [factory default]) and M9036A PXIe embedded controller.
3. Settled to within 1 kHz or 1 ppm , whichever is greater of final value. Does not include data acquisition or processing time. Amplitude settled to within 0.1 dB. Channel filter set to none. Applies for all conversion types.
4. Time from trigger input to frequency and amplitude settled. Minimum $I Q$ sample rate $\geq 6 \mathrm{MHz}$. Minimum spectrum acquisition $\geq 4.8 \mathrm{MHz}$. Minimum power acquisition channel filter bandwidth $\geq 4.8 \mathrm{MHz}$. For lists with first point < 400 MHz or for frequency changes from > 400 MHz to < 400 MHz , add 40 ms .
5. Baseband offset can be adjusted \pm from carrier frequency within limits determined by RF analysis bandwidth and IF filter bandwidth. Synthesizer frequency and amplitude are not changing. Baseband offset settled to within 1 kHz .
6. Mean time from IVI command to carrier frequency settled to within 1 kHz or 1 ppm , whichever is greater. Amplitude settled within 0.1 dB . Simultaneous carrier frequency and amplitude switching. For frequency changes from > 400 MHz to < 400 MHz , add 40 ms .

Technical Specifications and Characteristics

Frequency (continued)

Frequency reference (M9300A PXIe frequency reference module)	
Reference outputs	
100 MHz Out (Out 1 through Out 5)	
Amplitude	$\geq 10 \mathrm{dBm}$
Connectors	5 SMB snap-on
Impedance	50Ω, nominal
10 MHz Out	
Amplitude	9.5 dBm, nominal
Connectors	1 SMB snap-on
Impedance	50Ω, nominal
OCXO Out	
Amplitude	11.5 dBm, nominal
Connectors	1 SMB snap-on
Impedance	50Ω, nominal
Frequency accuracy	
Same as accuracy of internal time base or external reference input	
Internal timebase	
Accuracy	$\pm[$ (time since last adjustment x aging rate) \pm temperature effects \pm calibration accuracy]
Frequency stability	
Aging rate	
Daily	< $\pm 0.5 \mathrm{ppb} /$ day, after 72 hours of warm-up
Yearly	< ± 0.1 ppm/year, after 72 hours of warm-up
Total 10 years	< ± 0.6 ppm/10yrs, after 72 hours of warm-up
Achievable initial calibration accuracy (at time of shipment)	$\pm 5 \times 10^{-8}$
Temperature effects	
20 to $30{ }^{\circ} \mathrm{C}$	< $\pm 10 \mathrm{ppb}$
Full temperature range	< $\pm 50 \mathrm{ppb}$
Warm up	
5 minutes over +20 to $+30^{\circ} \mathrm{C}$, with respect to 1 hour	< $\pm 0.1 \mathrm{ppm}$
15 minutes over +20 to $+30^{\circ} \mathrm{C}$, with respect to 1 hour	< $\pm 0.01 \mathrm{ppm}$
External reference input	
Frequency	1 to 110 MHz , sine wave
Lock range	± 1 ppm, nominal
Amplitude	0 to 10 dBm , nominal
Connector	1 SMB snap-on
Impedance	50Ω, nominal

Technical Specifications and Characteristics

Amplitude

7. At expected input level $\leq-37 \mathrm{dBm}$, pre-amp is switched on.
8. Total absolute amplitude accuracy is the total of all amplitude measurement errors. This specification includes the sum of the following individual specifications: linearity, expected input level switching uncertainty, IF bandwidth filter switching uncertainty, absolute amplitude accuracy. The wide range of settings used (i.e., expected input level, etc.) are tested independently. The individual error contributions are calculated as follows: a 99.8 \% proportion and 95\% confidence are computed for each parameter on a statistically significant number of instruments. The root-sum-square (RSS) of these four independent Gaussian parameters is then taken. To that RSS value, two environmental effects and measurement uncertainty are added. One environmental effect is that of temperature (full and controlled temperature range, as defined above) and the other is the temperature variation of ± 3 degrees around a field alignment. Applies over the following subset of settings and conditions: expected input level -50 dBm to +30 dBm ; input signals within 60 dB below expected input level; 40 MHz and 160 MHz IF filters; input signal at center frequency over full frequency range.
9. The absolute amplitude accuracy is the amplitude measurement error when only changing frequency. The expected input level, conversion type and IF bandwidth settings remain the same and the error introduced by those parameters are not included. Pre-amp auto/OFF expected input level +10 dBm and -12 dBm . Pre-amp ON expected input level -30 dBm .
10. Typical specifications shown at M9350A downconverter reported module temperature of $46{ }^{\circ} \mathrm{C}$ and a corresponding environment temperature of $25^{\circ} \mathrm{C}$.
11. When using pre-amp auto mode, applies for signal level within expected input level >-37 dBm.
12. When using pre-amp auto mode, applies for signal level within expected input level $\leq-37 \mathrm{dBm}$.

Technical Specifications and Characteristics

Amplitude (continued)
Amplitude repeatability and linearity

	Input signal relative to expected input level setting	Specification
Repeatability		$<0.05 \mathrm{~dB}$, nominal
Linearity 13	$>-35 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$
		$\pm 0.03 \mathrm{~dB}$, nominal
	$\leq-35 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$
		$\pm 0.04 \mathrm{~dB}$, nominal

IF flatness ${ }^{14,15}$

Analysis bandwidth	IF filter	Nominal
40 MHz	40 MHz	$\pm 0.08 \mathrm{~dB}$
100 MHz	160 MHz	$\pm 0.09 \mathrm{~dB}$
160 MHz	160 MHz	$\pm 0.10 \mathrm{~dB}$

IF phase linearity ${ }^{15}$

Analysis bandwidth	Conversion type	Peak to peak, nominal
40 MHz	All	1.0°
100 MHz	Single	0.8°
	Image protect	1.7°
160 MHz	Single	1.4°
	Image protect	1.8°

[^0]
Technical Specifications and Characteristics

Amplitude (continued)

IF bandwidth filter switching uncertainty ${ }^{16}$	Specification $\pm 0.4 \mathrm{~dB}$	Typical $\pm 0.15 \mathrm{~dB}$	Nominal $\pm 0.09 \mathrm{~dB}$
Expected input level switching uncertainty	Specification	Typical	Nominal
Pre-amp Auto/OFF			
Max input to +5dBm	$\pm 0.45 \mathrm{~dB}$	$\pm 0.14 \mathrm{~dB}$	$\pm 0.10 \mathrm{~dB}$
Crossing +5 dBm	$\pm 0.63 \mathrm{~dB}$	$\pm 0.24 \mathrm{~dB}$	$\pm 0.17 \mathrm{~dB}$
Pre-amp OFF			
+5 to -50 dBm	$\pm 0.41 \mathrm{~dB}$	$\pm 0.16 \mathrm{~dB}$	$\pm 0.11 \mathrm{~dB}$
Pre-amp ON			
+0 to -50 dBm	$\pm 0.64 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$
Pre-amp AUTO			
Crossing - 37 dBm	$\pm 0.95 \mathrm{~dB}$	$\pm 0.19 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$

Amplitude switching speed
\(\left.$$
\begin{array}{lll}\hline \text { Arbitrary amplitude change } & \text { Standard, nominal } & \begin{array}{l}\text { Option UNZ, nominal } \\
\text { List mode switching speed }{ }^{17}\end{array}
$$

\hline Non-list mode switching speed{ }^{18} \& \leq 5 \mathrm{~ms} \& \leq 136 \mu \mathrm{~s}\end{array}\right]\)| | $\leq 5 \mathrm{~ms}$ | |
| :--- | :--- | :--- |
| Input voltage standing wave ratio (VSWR) | Nominal | |
| $<10 \mathrm{MHz}$ | $1.7: 1$ | |
| 10 MHz to 2.5 GHz | $1.4: 1$ | |
| $>2.5 \mathrm{GHz}$ | $1.7: 1$ | |

16. Amplitude error relative to the reference IF bandwidth filter of 40 MHz .
17. Settled to within 0.1 dB of final value. Does not include data acquisition or processing time. When used with the M9018A PXIe chassis (2-link configuration: 1×8 [factory default]) and the M9036A PXIe embedded controller.
18. Mean time from IVI command to amplitude settled.

Technical Specifications and Characteristics

Dynamic range

Displayed average noise level (DANL) ${ }^{19}$

Conversion type	Frequency	Specification		Nominal
Pre-amp OFF				
Image protect	$<100 \mathrm{MHz}$			$-145 \mathrm{dBm} / \mathrm{Hz}$
	100 to < 700 MHz	$-137 \mathrm{dBm} / \mathrm{Hz}$		$-147 \mathrm{dBm} / \mathrm{Hz}$
	700 MHz to < 5.75 GHz	$-140 \mathrm{dBm} / \mathrm{Hz}$		$-148 \mathrm{dBm} / \mathrm{Hz}$
	5.75 to 6 GHz	$-129 \mathrm{dBm} / \mathrm{Hz}$		$-146 \mathrm{dBm} / \mathrm{Hz}$
Single	$<1.2 \mathrm{GHz}$	$-148 \mathrm{dBm} / \mathrm{Hz}$		-154 dBm/Hz
	1.2 to 3.1 GHz	$-143 \mathrm{dBm} / \mathrm{Hz}$		$-152 \mathrm{dBm} / \mathrm{Hz}$
	> 3.1 to < 5.4 GHz	$-138 \mathrm{dBm} / \mathrm{Hz}$		$-149 \mathrm{dBm} / \mathrm{Hz}$
	5.4 to 6 GHz	$-133 \mathrm{dBm} / \mathrm{Hz}$		$-148 \mathrm{dBm} / \mathrm{Hz}$
Pre-amp ON				
Image protect	$<100 \mathrm{MHz}$			-162 dBm/Hz
	100 MHz to < 2.7 GHz	$-156 \mathrm{dBm} / \mathrm{Hz}$		$-161 \mathrm{dBm} / \mathrm{Hz}$
	2.7 to 4.4 GHz	$-155 \mathrm{dBm} / \mathrm{Hz}$		$-160 \mathrm{dBm} / \mathrm{Hz}$
	> 4.4 to < 5.6 GHz	-152 dBm/Hz		-157 dBm/ Hz
	5.6 to 6 GHz	$-141 \mathrm{dBm} / \mathrm{Hz}$		-154 dBm/Hz
Single	$<1.1 \mathrm{GHz}$	$-157 \mathrm{dBm} / \mathrm{Hz}$		$-161 \mathrm{dBm} / \mathrm{Hz}$
	1.1 to < 3.6 GHz	$-154 \mathrm{dBm} / \mathrm{Hz}$		$-158 \mathrm{dBm} / \mathrm{Hz}$
	3.6 to 5 GHz	-151 dBm/Hz		$-156 \mathrm{dBm} / \mathrm{Hz}$
	>5 to 6 GHz	$-146 \mathrm{dBm} / \mathrm{Hz}$		$-153 \mathrm{dBm} / \mathrm{Hz}$
Third order intermodulation distortion (TOI) ${ }^{20}$		TO2 ${ }^{23}$		Distortion ${ }^{24}$
Conversion type: auto	Frequency	Specification	Typical	Specification
Pre-amp OFF ${ }^{21}$	$\leq 400 \mathrm{MHz}$	$+15 \mathrm{dBm}$	+20.5dBm	-52 dBc
	> 400 MHz to 3 GHz	$+18 \mathrm{dBm}$	+23 dBm	-52 dBc
	$>3 \mathrm{GHz}$	$+20 \mathrm{dBm}$	$+23.5 \mathrm{dBm}$	-52 dBc
Pre-amp ON ${ }^{22}$	$\leq 100 \mathrm{MHz}$	$-9.9 \mathrm{dBm}$	$-2.5 \mathrm{dBm}$	$-56 \mathrm{dBc}$
	> 100 to 850 MHz	$-7.9 \mathrm{dBm}$	+2 dBm	-58dBc
	> 850 MHz to 2 GHz	$-4.3 \mathrm{dBm}$	$+5 \mathrm{dBm}$	$-47 \mathrm{dBc}$
	> 2 to 3 GHz	-0.9 dBm	$+7 \mathrm{dBm}$	-41 dBc
	> 3 to 6 GHz	+1 dBm	$+5 \mathrm{dBm}$	-32 dBc

[^1]
Technical Specifications and Characteristics

Dynamic range (continued)

Second harmonic distortion (SHI)

Conversion type: image protect	Frequency	SHI, nominal ${ }^{26}$	Distortion, nominal ${ }^{27}$
Pre-amp OFF ${ }^{25}$	$\leq 1.35 \mathrm{GHz}$	+35 dBm	-45 dBc
	$>1.35 \mathrm{GHz}$	+95 dBm	-105 dBc

Using 15 MHz IF Filters with 60 MHz tone spacing for 3rd order intermodulation measurements

— 3rd Order Intermodulation — DANL (1 Hz RBW) — DANL (30KHz RBW)
Using 15MHz IF Filters with 60 MHz tone spacing for 3rd order intermodulation measurements

Figure 4. Dynamic range at 2 GHz , pre-amp OFF, single-high conversion type.

Figure 5. Dynamic range at 5.8 GHz, pre-amp OFF, single-high conversion type.
25. Expected input level -10 dBm . Mixer level offset +10 dB .
26. $\mathrm{SHI}=$ second harmonic intercept. The SHI is given by the input power in dBm minus the second harmonic distortion level relative to the input signal in dBc .
27. For 0 dBm input signal.

Technical Specifications and Characteristics

Dynamic range (continued)

— 3rd Order Intermodulation - DANL (1Hz RBW) —DANL (30KHz RBW)
Using 15 MHz IF Filters with 60 MHz tone spacing for 3rd order intermodulation measurements

Figure 6. Dynamic range at 2 GHz , pre-amp OFF, image protect conversion type.

Figure 7. Dynamic range at 5.8 GHz , pre-amp OFF, image protect conversion type.

Technical Specifications and Characteristics

Spectral purity

Phase noise 28			
Conversion type	Center frequency	Offset	Nominal
Single low	1.1 GHz	10 kHz	$-120 \mathrm{dBc} / \mathrm{Hz}$
Single high	1 GHz	10 kHz	$-119 \mathrm{dBc} / \mathrm{Hz}$

Figure 8. Phase noise at 1 GHz
(1.1 GHz for single-low conversion type).

Figure 9. Phase noise at 5.8 GHz .
28. Mixer level offset +20 dB .

Technical Specifications and Characteristics

Spectral purity (continued)

Residuals, images \& spurious responses

Non-input related spurs ${ }^{29}$	Conversion type	Frequency	Nominal
Expected input level			
Pre-amp ON			
$\leq 0 \mathrm{dBm}$ (measured at -50 dBm)	Single	All	<-120 dBm
	Image protect	All ${ }^{30}$	<-120 dBm
Pre-amp OFF			
$<+5 \mathrm{dBm}$ (measured at -50 dBm)	Single	$\leq 3 \mathrm{GHz}$	<-120 dBm
		$>3 \mathrm{GHz}$	<-116 dBm
	Image protect	All ${ }^{31}$	<-105 dBm
$\underline{\geq}+5 \mathrm{dBm}$ (measured at +6 dBm)	Single	All	<-98 dBm
	Image protect	All 32	<-90 dBm
LO related spurs ${ }^{33}$	Offsets from carrier	Frequency	Nominal
	200 to 10 kHz	All	- 82 dBC
	10 kHz to 10 MHz	All	- 55 dBC
First order RF spurious responses ${ }^{34}$	Offsets from carrier	Frequency	Nominal
	$\geq 10 \mathrm{MHz}$	$\geq 200 \mathrm{MHz}$ to 6 GHz	-60 dBc
Higher order RF spurious responses ${ }^{34}$	Offsets from carrier	Frequency	Nominal
	$\geq 10 \mathrm{MHz}$	$\geq 200 \mathrm{MHz}$ to 6 GHz	-60 dBc
Image responses ${ }^{35}$	Conversion type	Frequency	Nominal
	Image protect	All	<-68 dBC
IF rejection ${ }^{36}$	IF bandwidth filter	Frequency	Nominal
	15 MHz	$\leq 400 \mathrm{MHz}$	$<-57 \mathrm{dBc}$
		$>400 \mathrm{MHz}$	$<-105 \mathrm{dBC}$
	40 MHz	$\leq 450 \mathrm{MHz}$	<-57dBc
		> 450 MHz	$<-98 d B C$
	160 MHz	All	<-85dBC
L0 emission ${ }^{37}$	Conversion type	Frequency	Nominal
	Single	$\leq 3 \mathrm{GHz}$	-72 dBm
		$>3 \mathrm{GHz}$	-62 dBm
	Image protect	All	$-88 \mathrm{dBm}$

[^2]
Technical Specifications and Characteristics

Data acquisition

Maximum capture memory	Non-list mode	List mode
Option M01	128 MSample (512 MB)	128 MSample (512 MB)
Option M05	512 MSample (2 GB)	512 MSample (2 GB)
Option M10	1 GSample (4GB) ${ }^{38}$	512 MSample (2 GB) to ~ 1 GSample (3.999 GB) ${ }^{39}$
Segments		
Minimum length	1 sample ${ }^{40}$	
Maximum length	Full capture memory ${ }^{38}$	
Maximum sample rate		
Option B04 / 40 MHz	$50 \mathrm{MS} / \mathrm{s}$ complex, $100 \mathrm{MS} / \mathrm{s}$ real	
Option B10 / 100 MHz	125 MS/s complex, 250 MS/s real	
Option B16 / 160 MHz	200 MS/s complex, 400 MS/s real	
List mode		
Maximum number of segments	3201	
Trigger sources	External, magnitude	
Trigger modes	Per acquisition, interval timer trigger	
Triggering		
Delay range ${ }^{41}$	$-500 \mathrm{~ms} \mathrm{to}+500 \mathrm{~ms}$, nominal	
Delay resolution	1 sample, nominal	
External trigger signal frequency range	10 to 30 MHz for pulse	
External trigger signal level	TTL	
External trigger signal duty cycle range	20\% to 80\%	
External trigger signal waveform	Sine, pulse/square, ramp (symmetry	00\%)

Channel-to-channel synchronization ${ }^{42}$

	Timing	Phase
Skew	$\leq 400 \mathrm{ps}$, nominal	-
Jitter ${ }^{43}$	$\leq 50 \mathrm{ps}$, nominal	$\leq 0.3^{\circ}$, nominal
${\text { Repeatability }{ }^{44}}^{\text {Adjustment resolution }{ }^{45}}$	$\leq 80 \mathrm{ps}$, nominal	$\leq 1.0^{\circ}$, nominal
Drift over 12 hours	50 ps	0.05°

38. The default mode for allocation of capture memory is AgM9391MemoryModeNormal, where the digitizer's memory is shared by both the default single acquisition (capture ID $=0$) and all the other acquisitions with non-zero capture IDs. In particular, the memory for the default single acquisition is allocated from the area unused by the list acquisitions. If the available memory is not sufficient for the single acquisition, the user must release memory allocated for the non-zero capture ID acquisitions manually, thus increasing free space. Total memory usage is limited according to the memory option. Note that the maximum size of acquisition is 2 GB in this mode. To perform the default single acquisition with memory size larger than 2 GB , AgM9391MemoryModeLargeAcquisition must be selected. The non-zero capture ID acquisitions cannot be performed in this mode. All data acquired with AGM9391MemoryMode Normal will be invalidated.
39. The maximum size for a single list point capture is limited to 512 MSamples (2 GB). However, with option M10, total capture of up to 3.999 GB is available across all list mode captures.
40. 64-bit mode, 2 samples for 32 -bit mode.
41. Negative trigger delay limited to capture size
42. Multi-channel capability only supported with up to 8 -channels when configured with a Keysight M9018A PXIe chassis with FPGA version 1.05 or greater. Characteristics measured at $400,900,2400,5800 \mathrm{MHz}$ and apply in Auto Conversion mode at frequencies 2400 MHz with IF filter $=160 \mathrm{MHz}$. V2802A LO distribution network used for phase synchronization for more than 4 channels.
43. Jitter indicates measurement-to-measurement variation and applies over short time interval at room temperature without resetting or reinitializing a driver session.
44. Repeatability indicates stability of alignment between channels across power cycles and IVI sessions, with identical cabling and hardware settings (frequency, span, sample rate, etc.)
45. Channel time and phase offsets can be adjusted using OffsetDelay and OffsetPhase properties respectively.

Technical Specifications and Characteristics

Measurement speed ${ }^{46}$

46. EVM, ACPR and servo loop test times for the RF power amplifier test, reference solution are included in the solution brochure 5991-4104EN.
47. Capture block, transfer to host memory, 160 MHz BW, excludes frequency transitions below 400 MHz , with M9037A embedded controller (2-link configuration: 1×8 [factory default]).
48. Transfer to host memory, 160 MHz IF bandwidth filter, excludes frequency transitions below 400 MHz , with M9037A embedded controller (2-link configuration: 1×8 [factory default]).

Noise Figure Measurement Application

Description	Specifications	Supplemental Information
Noise figure		Uncertainty calculator ${ }^{49}$
$<10 \mathrm{MHz}$		See footnote ${ }^{50}$
10 MHz to 6 GHz		Internal and external preamplification recommended ${ }^{51}$
	Noise source ENR	Measurement range
	0 to 6.5 dB	Instrument uncertainty ${ }^{52}$
	12 to 17 dB	$\pm 0.054 \mathrm{~dB}$
	0 to 30 dB	$\pm 0.102 \mathrm{~dB}$

49. The figures given in the table are for the uncertainty added by the X-Series Signal Analyzer instrument only. To compute the total uncertainty for your noise figure measurement, you need to take into account other factors including: DUT NF, Gain and Match, Instrument NF, Gain Uncertainty and Match; Noise source ENR uncertainty and Match. The computations can be performed with the uncertainty calculator included with the Noise Figure Measurement Personality. Go to Mode Setup then select Uncertainty Calculator. Similar calculators are also available on the Keysight web site; go to http://www. keysight.com/find/nfu.
50. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.
51. The NF uncertainty calculator can be used to compute the uncertainty. For most DUTs of normal gain, the uncertainty will be quite high without preamplification.
52. "Instrument Uncertainty" is defined for noise figure analysis as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for a noise figure computation. The relative amplitude uncertainty depends on, but is not identical to, the relative display scale fidelity, also known as incremental log fidelity. The uncertainty of the analyzer is multiplied within the computation by an amount that depends on the Y factor to give the total uncertainty of the noise figure or gain measurement. See Keysight App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default because this is the widest bandwidth with uncompromised accuracy.

Description	Specifications	Supplemental Information
Gain		
Instrument uncertainty ${ }^{53}$		DUT gain range $=-20$ to +40 dB. See note ${ }^{54}$
$<10 \mathrm{MHz}$	$\pm 0.21 \mathrm{~dB}$	
10 MHz to 6 GHz		

53. "Instrument Uncertainty" is defined for gain measurements as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for the gain computation. See Keysight App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default since this is the widest bandwidth with uncompromised accuracy. Under difficult conditions (low Y factors), the instrument uncertainty for gain in high band can dominate the NF uncertainty as well as causing errors in the measurement of gain. These effects can be predicted with the uncertainty calculator.
54. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.

Description	Specifications	Supplemental Information
Noise figure uncertainty calculator ${ }^{55}$		
Instrument noise figure uncertainty	See the noise figure table earlier in this chapter	
Instrument gain uncertainty	See the gain table earlier in this chapter	
Instrument noise figure		See graphs of "nominal instrument noise figure"; noise figure is DANL +176.24 dB (nominal) ${ }^{56}$
Instrument input match	See graphs: nominal VSWR	

55. The Noise Figure Uncertainty Calculator requires the parameters shown in order to calculate the total uncertainty of a Noise Figure measurement.
56. Nominally, the noise figure of the spectrum analyzer is given by $N F=D-(K-L+N+B)$ where D is the $D A N L$ (displayed average noise level) specification, K is $\mathrm{kTB}(-173.98 \mathrm{dBm}$ in a 1 Hz bandwidth at 290 K$) \mathrm{L}$ is 2.51 dB (the effect of log averaging used in DANL verifications) N is 0.24 dB (the ratio of the noise bandwidth of the RBW filter with which DANL is specified to an ideal noise bandwidth) B is ten times the base-10 logarithm of the RBW (in hertz) in which the DANL is specified. B is 0 dB for the 1 Hz RBW. The actual NF will vary from the nominal due to frequency response errors.

Format specific measurement data

GSM ${ }^{57,58}$

	Parameters	Nominal
Global phase error	$0.9,1.8,1.9,2.0,2.1,2.2 \mathrm{GHz}$	$0.17{ }^{\circ}$
ORFS dynamic range	200 kHz offset	-36 dBc
	250 kHz offset	
400 kHz offset	-41 dBc	
kHz offset		
800 kHz offset	-69 dBc	
1200 kHz offset	-73 dBc	
1800 kHz offset	-77 dBc	

EDGE ${ }^{57,58}$

	Parameters	Nominal
Residual EVM	0.9, 1.8, 1.9, 2.0, 2.1, 2.2 GHz	0.23\% rms
ORFS dynamic range	200 kHz offset	-37 dBC
	250 kHz offset	$-42 d B C$
	400 kHz offset	-69 dBc
	600 kHz offset	-73 dBC
	800 kHz offset	-77 dBC
	1200 kHz offset	$-80 \mathrm{dBC}$
	1800 kHz offset	-77dBc

57. Synthesizer PLL mode set to PLL mode best wide offset.
58. Expected input level 0 dBm , input signal (total power) 0 dBm , mixer level offset +10 dB , conversion type: Auto, PeakToAverage set per signal peak to average.

Technical Specifications and Characteristics

Format specific measurement (continued)

59. Synthesizer PLL mode set to PLL mode best wide offset.
60. Expected input level 0 dBm , input signal (total power) 0 dBm , conversion type: Auto. PeakToAverage set per signal peak to average.
61. Synthesizer PLL mode set to PLL mode normal.
62. Multi-channel performance data applies when each channel is configured with its own independent synthesizer. Sharing a single synthesizer will degrade EVM performance approximately 1 dB .
63. Mixer level offset $=+5 \mathrm{~dB}$
64. Mixer level offset $=+10 \mathrm{~dB}$
65. Mixer level offset $=+15 \mathrm{~dB}$

Technical Specifications and Characteristics

Format specific measurement (continued)

Figure 10. WLAN 802.11ac SEM at $5.8 \mathrm{GHz}, 80 \mathrm{MHz}$ bandwidth.

Figure 11. WLAN 802.11a/g SEM at $2.4 \mathrm{GHz}, 20 \mathrm{MHz}$ bandwidth.

Technical Specifications and Characteristics

Format specific measurement (continued)

LTE FDD - single channel 66,67	Parameters		1-chann	minal
$10 \mathrm{MHz} \mathrm{BW} \mathrm{EVM}$,	$0.7,0.9 \mathrm{GHz}$		$-52.2 \mathrm{~dB}$	
E-TM 3.1 ${ }^{61,62}$	1.8, 1.9, 2.0, 2.1, 2.2 GHz		$-51.0 \mathrm{~dB}$	
10 MHz BW ACLR,	0.7, 0.9, 1.8, 1.9, 2.0, 2.1, 2.2 GHz	Adjacent	$-64.2 \mathrm{~dB}$	
E-TM $1.1{ }^{63}$	(power mode)	Alternate	$-65.5 \mathrm{dBC}$	
LTE FDD - MIMO ${ }^{\text {66,67, } 68}$	Parameters 2-ch	annel, nominal ${ }^{72}$	4-channel, nominal ${ }^{72}$	8-channel, nominal ${ }^{73}$
	$0.9 \mathrm{GHz}-49.8$	dB (0.32\%)	-50.1 dB (0.31\%)	-52.6 dB (0.23\%)
	2.0 GHz	dB (0.35\%)	-49.3 dB (0.34\%)	-48.8dB (0.36\%)
LTE TDD - MIMO ${ }^{\text {66,67,68 }}$	Parameters 2-c	nel, nominal ${ }^{72}$	4-channel, nominal ${ }^{72}$	8-channel, nominal ${ }^{73}$
	$0.9 \mathrm{GHz}-50.7$	dB (0.29\%)	-50.3 dB (0.31\%)	-56.3 dB (0.15\%)
	2.0 GHz	dB (0.36\%)	-49.0 dB (0.36\%)	-54.8dB (0.18\%)

66. Expected input level 0 dBm , input signal (total power) 0 dBm , conversion type: Auto. PeakToAverage set per signal peak to average.
67. Synthesizer PLL mode set to PLL mode normal.
68. Multi-channel performance data applies when each channel is configured with its own independent synthesizer. Sharing a single synthesizer will degrade EVM performance approximately 1 dB .
69. PDCCH power boost $=1.065 \mathrm{~dB}$
70. Mixer level offset $=+10 \mathrm{~dB}$
71. Mixer level offset $=+15 \mathrm{~dB}$
72. 10 MHz BW EVM, R9 downlink, 64 QAM, open loop spatial multiplexing
73. 10 MHz BW, DL, TM9 multi-layer, TM4 closed loop spatial multiplexing

Technical Specifications and Characteristics

Environmental and physical specifications

	Operating	Individual module temp 25 to $75^{\circ} \mathrm{C}$ as reported by the module and environment temp of 0 to $55^{\circ} \mathrm{C}$
	Non-operating (storage)	Environment temp of -40 to $+70^{\circ} \mathrm{C}$

74. Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use--those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power-line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
75. At 15,000 feet, the maximum environmental temperature is de-rated to $52^{\circ} \mathrm{C}$.

Technical Specifications and Characteristics

System requirements

Topic	Windows 7 requirements
Operating systems	Windows 7 (32-bit and 64-bit)
Processor speed	1 GHz 32-bit (x86), 1 GHz 64-bit (x64) (no support for Itanium 64)
Available memory	4 GB minimum 8 GB or greater recommended
Available disk space ${ }^{76}$	1.5 GB available hard disk space, includes: 1 GB available for Microsoft .NET Framework 3.5 SP1 ${ }^{77}$ 100 MB for Keysight IO Libraries Suite
Video	Support for DirectX 9 graphics with 128 MB graphics memory recommended (Super VGA graphics is supported)
Browser	Microsoft Internet Explorer 7 or greater

M9391A vector signal analyzer instrument drivers
Keysight IO libraries
Version 16.3.17914 or greater
76. Because of the installation procedure, less disk space may be required for operation than is required for installation.
77. NET Framework Runtime Components are installed by default with Windows 7. Therefore, you may not need this amount of available disk space.

Software

Instrument connection software

Keysight IO library

The IO library suite offers a single entry point for connection to the most common instruments including AXIe, PXI, GPIB, USB, Ethernet/LAN, RS-232, and VXI test instruments from Keysight and other vendors. It automatically discovers interfaces, chassis, and instruments. The graphical user interface allows you to search for, verify, and update IVI instrument and soft front panel drivers for modular and traditional instruments. The IO suite safely installs in side-by-side mode with $\mathrm{NI} \mathrm{I} / \mathrm{O}$ software.

Module setup and usage

Keysight soft

 front panel
Module management

Keysight
connection expert

The PXI module includes a soft front panel (SFP), a
software-based graphical user interface (GUI) which enables the instrument's
capabilities from your PC.

Connection expert is the graphical user interface included in the IO libraries suite that allows you to search for, verify and update IVI instrument and soft front panel drivers for modular and traditional instruments

Free software download at www.keysight.com/find/iosuite

Included on CD-ROM shipped with module or online

Free software download at www.keysight.com/find/iosuite

Programming

Driver Development environments

IVI-COM, IVI-C
LabVIEW, MATLAB
Programming assitance

Command
expert

Development environments
Visual Studio (VB.NET, C\#, C/C++), VEE
LabVIEW, LabWindows/CVI, MATLAB

Assists in finding the right instrument commands and setting correct parameters. A simple interface includes documentation, examples, syntax checking, command execution, and debug tools to build sequences for integration in Excel, MATLAB, Visual Studio, LabVIEW, VEE, and SystemVue.

Programming Each module includes programming examples for Visual Studio.
examples
net, LabVIEW, MATLAB, LabWindows, and Keysight VEE Pro.

The X-Series measurement applications transform modular PXI VSAs into standards based RF transmitter testers. Provides conformance measurements for many communications standards including : LTE, WLAN 802.11ac and others.

X-Series measurement
applications
for modular
instruments

89600 VSA software sees through the complexity of emerging and existing industry standards, serving as your window into complex signal interactions. Quickly characterize spurs and harmonics with speed-optimized stepped spectrum measurement provided by 89601B-SSA option.

SystemVue SystemVue is a system-level EDA platform for designing communications and defense systems. Used with the M9391A, SystemVue enables you to create model-based design validation tests to ensure consistency from design to manufacturing.

Included on CD-ROM shipped with module.

Free software download at www.keysight.com/find/commandexpert

Included on CD-ROM shipped with module.

Licensed software.
For more information, visit
www.keysight.com/find/pxi-x-series_apps

Licensed software.
For more information, visit
www.keysight.com/find/vsa

Licensed software.
For more information, visit
www.keysight.com/find/systemvue

Setup and Calibration Services

Assistance

One day startup assistance	Gain access to a technical expert who will help you get started quickly with the M9391A PXI VSA and its powerful software tools. The flexible instruction format is designed to get you to your first measurements and familiarize you with ways to adapt the equipment to a specific application.	Included in base configuration
Calibration and traceability	The M9391A PXI VSA ships factory calibrated with an ISO-9002, Factory calibration NIST-traceable calibration certificate.	Included in base Calibration cycle
A one year calibration cycle is recommended.	configuration	

Configuration and Ordering Information

Ordering information

Model	Description
M9391A	PXIe vector signal analyzer:
	1 MHz to 3 or 6 GHz
	Includes:
	M9301A PXIe synthesizer
	M9350A PXIe downconverter
	M9214A PXIe IF digitizer
	One day startup assistance
	Module interconnect cables
	Software, example programs and product
	information on CD

Base configuration

M9391A-F03	Frequency range: 1 MHz to 3 GHz
M9391A-B04	Analysis bandwidth, 40 MHz
M9391A-M01	Memory, 128 MSa
M9391A-300	PXIe frequency reference:
Required for	10 and 100 MHz
warranted	Adds M9300A PXIe frequency reference: specifications 10 and 100 MHz (M9300A module can support multiple M9391A modular instruments)

For configurations of the M9391A PXI VSA, including combinations with a single or multiple M9381A PXI VSGs, please consult the M9391A \& M9381A configuration guide, literature number 5991-0897EN.

Configurable options

Frequency	
M9391A-F03	1 MHz to 3 GHz
\checkmark M9391A-F06	1 MHz to 6 GHz
Switching speed	
\checkmark M9391A-UNZ	Fast switching
Analysis bandwidth	
M9391A-B04	40 MHz
M9391A-B10	100 MHz
\checkmark M9391A-B16	160 MHz
Memory	
M9391A-M01	128 MSa
M9391A-M05	512 MSa
\checkmark M9391A-M10	1024 MSa
Other	
M9391A-012	Phase coherency
M9391A-UK6	Commercial calibration certificate with test data for M9391A (M9301A, M9350A, M9214A)
M9300A-UK6	Commercial calibration certificate with test data for M9300A (module only)
Related products in recommended configuration	
\checkmark M9037A	PXIe embedded controller
\checkmark M9018A	18-slot PXIe chassis

Configuration and Ordering Information

Software information

Supported operating systems	Microsoft Windows 7 $(32 / 64-$-bit)
Standard compliant drivers	IVI-COM, IVI-C, LabVIEW, MATLAB
Supported application development environments (ADE)	VisualStudio (VB.NET, C\#, C/C++), VEE,
LabVIEW, LabWindows/CVI, MATLAB	
Keysight IO libraries	Includes: VISA libraries, Keysight
(version 16.3 or newer)	Connection Expert, IO monitor
Keysight Command	Instrument control for SCPI or
Expert	IVI-COM drivers
89600 VSA Software	89600B-200 Basic VSA software
(version 17.21 or newer;	89601B-300 Hardware connectivity
Option SSA added in	89601B-SSA Spectrum analysis
version 18.5)	89601B-AYA GP analysis
	89601B-B7T cdma2000®/1xEV-DO
	89601B-B7UW-CDMA/HSPA+
	89601B-B7R WLAN802.11a/b/g/j/p
	89601B-B7XTD-SCDMA
	89601B-BHD LTE FDD
	89601B-BHG LTE FDD - Advanced
	89601B-BHE LTE TDD
89601B-BHH LTE TDD - Advanced	

Accessories

Model Y1212A	Description Slot blocker kit: 5 modules
Y1213A	PXI EMC filler panel kit: 5 slots
Y1299A	PXI solutions startup kits
Y1243A	Cable kit for M9301A LO distribution
M9021A	PCle ${ }^{\circledR}$ cable interface
M9045B	PCle express card adaptor for laptop connectivity
Y1200B	PCle cable for laptop connectivity
M9048A	PCle desktop adaptor for desktop connectivity
Y1202A	PCle cable for desktop connectivity

Model	Description
M9381A	PXle vector signal generator
M9380A	PXIe CW source
M9300A	PXle frequency reference
M9018A	PXIe 18-slot chassis
M9037A	PXIe embedded controller

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

[^0]: 13. Input level 20 dB above the noise floor and dither on, no change in hardware settings, below expected input level.
 14. Amplitude deviation from the mean error of the entire bandwidth, all conversion types.
 15. Expected input level 0 dBm . Center frequency $\geq 250 \mathrm{MHz}$.
[^1]: 19. Expected input level of -50 dBm . Mixer level offset +10 dB .
 20. Two tone, 100 kHz tone spacing.
 21. Expected input level -5 dBm . Mixer level offset +10 dB .
 22. Expected input level -25 dBm . Mixer level offset +15 dB .
 23. TOI = third order intercept. The TOI is given by the input tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc.
 24. Expected input level -10 dBm with preamp off and -30 dBm with preamp on.
[^2]: 29. Mixer level offset at 10 dB , input terminated, with 50Ω load.
 30. From 4.72 to 4.88 GHz , specification at $<-108 \mathrm{dBm}$, nominal.
 31. From 4.72 to 4.88 GHz , specification at $<-96 \mathrm{dBm}$, nominal.
 32. From 4.72 to 4.88 GHz , specification at $<-80 \mathrm{dBm}$, nominal.
 33. Expected input level 0 dBm . Mixer offset level -10 dB .
 34. Conversion type: image protect, pre-amp OFF, expected input level -20 dBm and mixer level offset 0 dB .
 35. Excitation frequency: [F=2*Final IF] MHz, expected input level -20 dBm , mixer level offset -30 dB .
 36. Suppression of signal at IF frequencies when tuned at least $2 \times$ IF BW away. All input paths, image protect, expected input level -30 dBm . Input signal at - 30 dBm and mixer level offset 0 dB .
 37. Expected input level -50 dBm . Mixer level offset +10 dB .
