DATA SHEET

M9506A High-Performance, 5-slot AXIe Chassis

PCIe Gen 3, 16 GB/s slot BW, up to 300 W/slot

Introduction

The Keysight Technologies, Inc. M9506A is a high-performance AXIe chassis and is the best choice for demanding, modular applications. The chassis is compliant with the AXIe 1.0 Rev 3.0 Wide-AXIe specification. It provides 5 slots for AXIe instrument modules, up to 300 watts per slot, and includes an embedded system module that does not take up an instrument slot. The embedded system module (ESM) provides a Gen 3 x8/x16 PCIe® interfaces for connecting the chassis to an external controller or expanding the system using multiple chassis. To minimize rack space, the instrument module slots are arranged horizontally. The chassis is the quietest AXIe chassis available with its new cooling design.

Key Features

- Five x16 Gen 3 slots compliant to AXIe 1.0 Revision 3 (AXIe-wide)
- Embedded system module with flexible, dual Gen 3 x8 PCIe interface for high data BW and multi- chassis configurations
- Thunderbolt TM 3 interface provides an alternative connection to a Thunderbolt-equipped laptop or desktop computer and doesn't require a PC interface card in most cases
- Optional integrated backside controller for digitizers (M9506A-BC1), enabling secure SCPI over LAN functionality
- 62 differential, high-bandwidth local bus lines provide very large data path between adjacent modules
- High-performance, push-pull cooling system increases airflow while decreasing fan noise
- High-power with up to 300W cooling per slot
- Open Zone 3 for system customization
- Multi-chassis power-sequencing and front panel external trigger inputs/outputs for multichassis synchronization
- Front-removable fan trays
- · GPS synchronization and time stamping option

Backplane Configuration

The M9506A provides a Gen 3 x16 PCIe linked to each instrument along with a high-performance local bus, GbE LAN fabric, DC power rail, and triggering lines.

Figure 1. M9506A AXIe chassis backplane

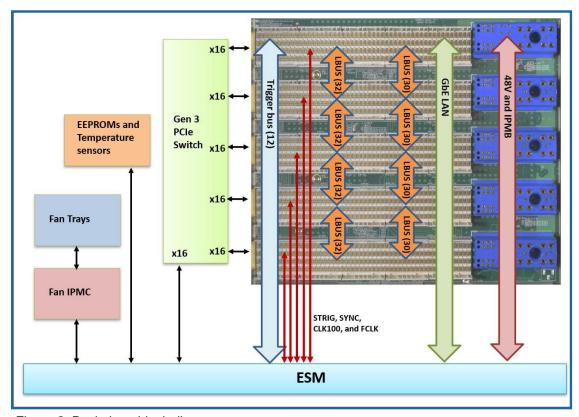


Figure 2. Backplane block diagram

Embedded System Module (ESM)

The M9506A AXIe chassis utilizes an embedded system module to perform the chassis management functions contained in the AXIe specification. In addition, the ESM also provides external clock and trigger in/out connectors for system synchronization. It can be connected to the host using either a Gen 3 x8/x16 PCIe or Thunderbolt 3 cable. The front panel x8 PCIe connectors are disabled when using the Thunderbolt connection.

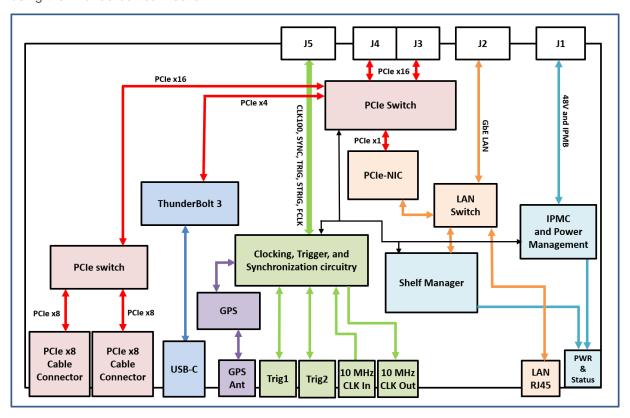


Figure 3. M9506A ESM block diagram

Open Zone 3

The M9506A chassis provides access to the Zone 3 defined in the AXIe standard. Access to Zone 3 is achieved by removing back panel and backplane covers. This will access to the Zone 3 area on modules in slots 2-5 and is perfect for applications such as running cable to the back of AXIe modules.

Figure 4. M9506A Zone 3 access

GPS Synchronization and Timestamping

The M9506A-GPS option adds GPS synchronization ability along with an external antenna port on the front panel. It provides an accurate 1 PPS output and the 10/100 MHz reference can be locked to this clock. The PPS signal can be propagated to trigger I/O and trigger events can be timestamped. Other GPS information is also provided including latitude, longitude, and altitude.

Software Platform

Driver

The M9506A chassis comes complete with IVI. NET, IVI-C, and LabVIEW drivers. Windows 7, 8.1, and 10 operating systems are supported, and applications can be created using a variety of software tools including LabVIEW, LabWindows/CVI, MATLAB, VEE, Visual Basic, VisualStudio.NET (C/C++, C#, VB.NET).

Chassis Web Interface

The AXIe chassis includes a built-in Web interface for configuration, control, and monitoring of the chassis (Figure 5). This interface can be accessed by either LAN or PCIe.

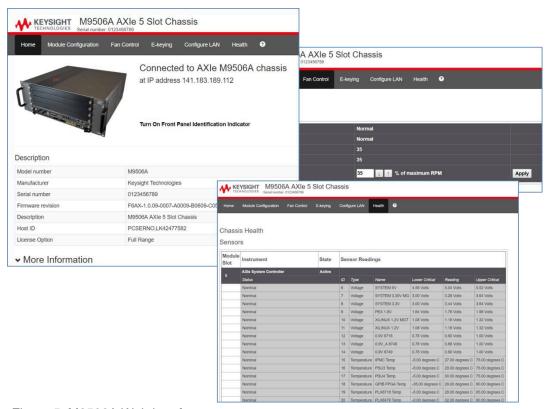


Figure 5. M9506A Web interface

Soft Front Panel Interfaces

Two Soft Front Panel (SFP) interfaces to monitor and control the AXIe chassis are provided with the M9506A driver. Both SFPs use the IVI driver for communications with the chassis.

- The chassis monitoring SFP has some of the basic functionality of the chassis Web page and allows the user to review numerous performance characteristics such as fan speeds, chassis temperatures, and power supply operating conditions. The monitoring SFP is shown in Figure 6.
- The triggering SFP provides an interface to the chassis triggering subsystem and simplifies triggering setup. The trigger SFP is shown in Figure 7.

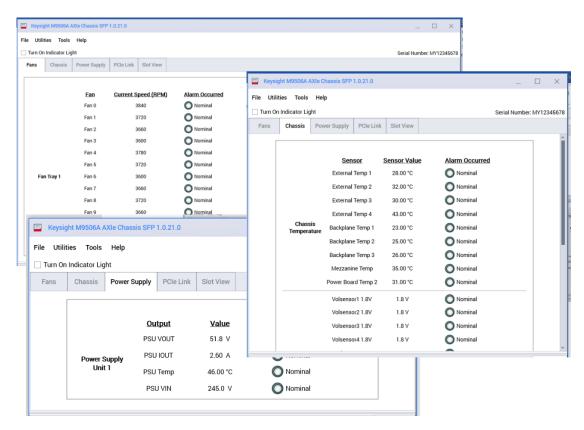


Figure 6. Chassis monitoring SFP

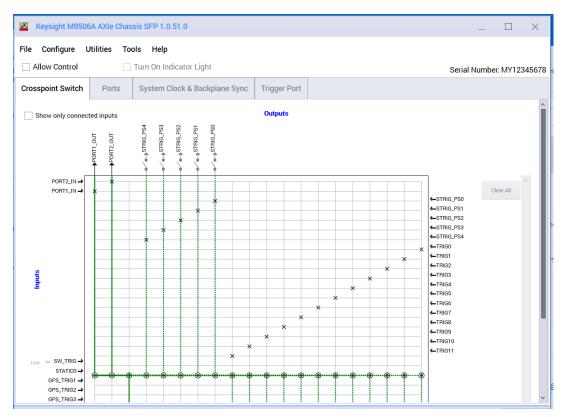
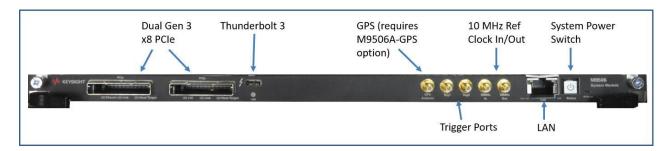


Figure 7. Trigger SFP


Technical Specifications and Characteristics

General Chassis Characteristics			
Standards Compliance			
AXIe-1 Revision 3.0			
Backplane			
Instrument module slots	5		
AXIe system module	Embedded		
ESM slot configuration	x16		
AXIe instrument slot configuration	x16		
Backplane speed	PCIe revision 3.0 (Gen 3)		
Mechanical			
Size	482mm W x 195mm H x 497mm D (with bumpers)		
	449mm W x 177mm H x 497mm D (with bumpers removed)		
	4U x 1 rack width		
Weight (without modules)	23.5 kg (51.8 lbs)		
Power Supply Characteristics			
AC Input			
Operating voltage/power ¹	100/120 V, 1380 W (maximum) 220/240 V, 2000 W (maximum)		
Input frequency range	50/60 Hz		
Over current protection	Auto-recovery		
DC output			
DC output voltage	52 V		
Maximum ripple and noise	500 mV pk-pk		
Instrument Module DC Output Power Characteristics	100/120 V AC	220/240 V AC	
Maximum DC output power	940 W	1500 W	
Maximum DC output current	18.0 A	28.8 A	
Power dissipation, instrument slot			
100/120 V	300 W ^{2,3}		
220/240 V	300 W ³		
Chassis Cooling			
Slot airflow direction	Right to Left		
Chassis cooling intake	Right side of chassis		
Chassis cooling exhaust	Left side of chassis		
Chassis cooling fans Auto switching between 100/120V and 220/2	Six 90 cfm intake fans and six 90 cfm exhaust fans		

¹Auto switching between 100/120V and 220/240V ²Limit total slot power dissipation to 940W when using 100/120 VAC (a maximum of three slots dissipating 300W each are supported) ³A maximum per slot dissipation of 300W at 40°C and 1500m will result in a ≤15°C module temperature rise. At 50 °C and 3000m, module temperature rise will be ≤18°C

Clocks and Triggers		
100 MHz System Clock (CLK100)		
Maximum slot-to-slot skew	100 ps	
Accuracy	±30 ppm	
Input impedance	50 Ω	
AXIe Differential Star Trigger (STRIG)	00 12	
Maximum slot-to-slot skew	100 ps	
External Clock Out (10 MHz Out)	•	
Connector	SMB	
Output frequency	10 MHz ± 30 ppm	
Output level	3.3 V, AC coupled	
Output impedance	50 Ω	
External Clock In (10 MHz In)		
Connector	SMB	
Frequency input	10 MHz ±100 ppm	
Input level	5V pk-pk, AC coupled	
Minimum swing	250 mV	
Input impedance	50 Ω	
External Triggers (Trig1 and Trig2)		
Connectors	SMB	
Direction	Programmable	
Output level	3.3 V CMOS	
Output impedance (push-pull)	50 Ω	
Output impedance (open-drain)	316 Ω pulled up to 3.3 volts	
Input level	±5 V, adjustable threshold	
Input impedance	50 Ω or 3 kΩ (programmable)	
Minimum input swing	250 mV	
GPS Option		
Receiver	U-Blox LEA-M8F	
Supported systems	GPS (L1), GLONASS (L1), and BeiDou (B1)	
PPS accuracy	≤ 20ns Clear sky	
Tracking sensitivity	-165 dBm (GPS, GLONASS), -160 dBm (BeiDou)	
Sensitivity (cold start)	-148 dBm (GPS), -145 dBm (GLONASS), -138 dBm (BeiDou)	
Required antenna type	3.3V Active Antenna	
Active antenna recommendations	Minimum gain: 15dB Maximum gain: 30dB Maximum noise figure: 1.5dB	
Antenna connector	SMB	

ESM Front Panel Connectors

Environmental Characteristics^{1,2}

Operating and Storage Conditions	Operating	Storage		
Temperature	0°C to 50°C	-40°C to 70)°C	
Altitude	Up to 3000m	Up to 4600)m	
Maximum Relative Humidity (non-condensing):	Type tested, 95%RH up to 40°C, decreases linearly to 45%RH at 50°C ³			
Vibration				
Operating random vibration: type-tested at 5 to 500 Hz, 0.21 g rms				
Survival random vibration: type-tested at 5 to 500 Hz, 2.09 g rms				
Acoustical Emissions (referenced to 1 pW)	Typical Emissions at Different Cooling Loads per Slot ⁵			
	200 W	250 W	300 W ⁶	
Sound pressure level ⁴	60.8 dBA	64.5 dBA	71.0 dBA	
Sound power	68.0 dBA	70.9 dBA	72.5 dBA	

Regulatory Characteristics

Complies with the essential requirements of the European LVD Directive of the following standards (dates and editions are cited in the Declaration of Conformity):

IEC/EN 61010-1

Canada: CSA C22.2 No. 61010-1

USA: UL std no. 61010-1

Acoustic Statement (European Machinery Directive)

Acoustic noise emission LpA < 70 dB

Operator position

Normal operation mode per ISO 7779

Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end -use. Those stresses include but are not limited to temperature, humidity, shock, vibration, alt itude and power line conditions ²Test Methods are aligned with IEC 60068 -2 and levels are similar to MIL-PRF-28800F Class 3 ³From 40°C to 50°C, the maximum % Relative Humidity follows the line of constant dew point

⁴At operator position

⁵At sea-level and 25°C ambient temperature

⁶Maximum fan speed

Regulatory Characteristics (continued)

EMC

Complies with European EMC Directive of the following standards (dates and editions are cited in the Declaration of Conformity):

- IEC/EN 61326-1
- CISPR pub 11 group 1, class A
- AS/NZS CISPR 11
- ICES/NMB-001

This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada

Definitions for Specifications

Specification (spec)

Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. All specifications and characteristics apply over the operating environment outlined in the "Environmental and Regulatory" section of this data sheet. In addition, the following conditions must be met:

- Instrument is within its calibration cycle if calibration is required.
- Instrument has been stored for a minimum of 1 hour within the operating temperature range prior to turn-on and after a 30-minute warm-up period.

Characteristics

Characteristics describe product performance that is useful in the application of the product, but that is not covered by the product warranty. Characteristics are often referred to as Typical or Nominal values.

Typical (typ)

Expected performance of an average unit when operated over a 20 to 30 °C temperature range. Typical performance is not warranted. The instrument must be within its calibration cycle if calibration is required.

Nominal (nom)

Nominal describes representative performance that is useful in the application of the product when operated over a 20 to 30 °C temperature range. Nominal performance is not warranted.

Additional Information

All data are measured from multiple units at room temperature and are representative of product performance within the operating temperature range unless otherwise noted.

The data contained in this document is subject to change.

Configuration

Configure the Keysight M9506A AXIe chassis as follows:

- Select the appropriate power cord based on the country where the chassis will be used. If
 this is North America, Japan, or Taiwan, there are two choices (100-120V and 200 240V).
 If more than 940 W are required based on the AXIe modules used, then the chassis must be
 operated on 200 240 VAC and the appropriate power cord should be selected.
- 2. Select control approach:
 - If an embedded controller is required, select an AXIe embedded controller (Keysight M9537A is recommended)
 - If an external computer is being used, select an appropriate PC interface card (Keysight M9048B / M9049A are recommended)
 - If SCPI over LAN for digitizers is required, select option -BC1
- 3. Select an appropriate cable to connect the computer interface board to the chassis interface (the Y1202A is recommended to connect the M9048B and M9022A)
- 4. Order an Y1221A AXIe Filler Module for each chassis slot which will be empty once the AXIe modules are installed. AXIe Filler Modules are not included with the chassis.
- 5. If the chassis is going to be rack-mounted, order the Y1227A rack mount kit (Figure 7)
- 6. Select other accessories as required

Figure 8. Y1227A Rack Mount Kit

Multi-chassis Configuration

The M9506A can be used in multi-chassis configurations with other AXIe chassis and PXIe Chassis (such M9019A). The number of chassis that can be interconnected depends on the controller and operating system used. See Tested PC and PXI/AXIe Chassis Configurations (5990-7632EN) Technical Overview for more details.

Option -BC1: Integrated Backside Controller for Digitizer Modules

Test system security is a challenge that many Aerospace and Defense (AD) customers face. The open operating systems found in current test equipment is a vulnerability point that requires significant management and overhead. Additionally, many of these customers prefer the ease of use of traditional benchtop equipment which have LAN interfaces, SCPI programming, and historically had closed operating systems.

Option -BC1 was developed to enhance security for high channel count digitizer applications, bringing the ease of use of traditional benchtop together with the benefits of a modular platform. A simple LAN connection gives you easy SCPI based control of many channels in a small space.

- Ease of use of traditional benchtop
 - LAN Interface
 - SCPI programming
 - o Closed OS
- · Benefits of modular platform
 - Performance
 - Channel density
 - Power consumption / cable management

Option -BC1 adds a closed, instrument-grade, Linux-based controller to the back of the M9506A chassis. It includes the necessary software layers (i.e. VISA / HiSLIP server, SCPI parser, Linux instrument driver) for SCPI over LAN control of the M9703B, M9710A, and M9709A digitizers. (see Figure 9).

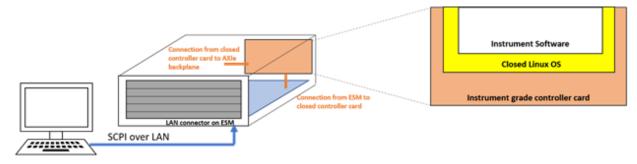


Figure 9. Conceptual block diagram for M9506A-BC1. Support of additional HW simply requires additional software

Ordering Information

Software

Supported Software Components	
Operating systems	Microsoft Windows 7 (32/64-bit), Microsoft Windows 8 (32/64-bit), Microsoft Windows 10 (32/64-bit)
Standard compliant drivers	IVI.NET, IVI-C, LabVIEW, MATLAB
Application development environments (ADE)	Visual Studio (VB.NET, C#, C/C++), LabVIEW, LabWindows/CVI, VEE
Keysight IO libraries	Version 2018 update 1 (or greater)

Hardware

Model	Description	
M9506A	AXIe chassis: 5-slot, Gen 3, Embedded System Module	
	AXIe Filler Modules are not included	
M9506A-BC1	Integrated Backside Controller for Digitizer Modules ¹	
M9506A-GPS	GPS synchronization and timestamping	
Accessories		
Y1221A	AXIe Filler Module	
Y1227A	M9506A rack mount kit	
Related Products		
M9537A	Embedded AXIe controller	
M9048B and M9049A	PCle host adapter: Gen 3, x8 or x16	
Y1202A	PCIe cable: x8, 2.0 m	

 $^{^{1}\}mathrm{Option}$ -BC1 only supports M9703B, M9710A, M9709A digitizers

AXIe is a registered trademark of the AXIe Consortium
PCI-SIG®, PCI Express®, and PCIe® are registered trademarks of PCI-SIG
Thunderbolt and the Thunderbolt logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

